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ABSTRACT
 A method is presented for the efficient solution of
the inverse geometric problem applied to detection of
subsurface cavities and flaws using thermographic
techniques. A hybrid method, consisting of the
superposition of clusters of sources/sinks coupled to a
boundary element solution, is developed for the
solution of the forward problem. The numerical scheme
avoids re-meshing of the interior geometry as it evolves
in the process of solving the inverse problem iteratively
to detect the subsurface flaw or cavity. The hybrid
approach markedly reduces the computational burden
involved in re-meshing and presents a promising
technique for 3D applications.

INTRODUCTION
 This paper concerns the solution of the inverse
geometric problem which finds application in the
nondestructive evaluation of subsurface flaws and
cavities he governing equation, thermophysical. T
properties, boundary conditions, and that portion of the
geometry that is exposed are all known, while, the
portion of the geometry that is hidden from view is to
be characterized with the help of an over-specified
(Cauchy) condition at the exposed surface, see Fig. 1.
Specifically, the surface temperature and heat flux is
given at the exposed surface, and the geometry of the
cavity(ies) that generated the measured temperature
footprint is to be determined. The boundary condition
at the cavity side can be specified as either
homogeneous or non-homogeneous first, second, or
third kind of boundary condition.
 Solution of the inverse geometric problem can be
undertaken by analyzing either the transient or steady
state thermal response of a system subjected to a
thermal load. This leads to two classes of techniques:
transient based thermal wave imaging methods [1-2]
and steady state based methods [3-5]. We are
concerned with the latter for which Ramm [6]
demonstrates mathematically that a unique solution
exists for media with constant thermal conductivity.
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Figure 1. The inverse geometric heat conduction
problem identifying a subsurface cavity using surface
temperatures measured by thermographic methods
illustrated here as using an infrared scanner.

 The inverse geometric problem which has been
solved by a variety of numerical methods [7-14], or its
closely shape optimization [15-18], is arguably the
most computationally intensive of inverse heat transfer
problem. This is due to its inherent nature requiring a
complete re-generation of the mesh as the geometry
evolves regardless of whether a numerical or analytical
approach is taken to solve the associated direct
problem,. Moreover, the continuous evolution of the
geometry itself poses certain difficulties in arriving at
analytical or numerical sensitivity coefficients [19-21]
for gradient-based optimization approaches and in the
updates of the subsurface geometry(ies) and associated
mesh(es), particularly in 3D, whether using domain
meshing methods such as finite element of finite
volume methods or boundary meshing method such as
boundary elements [22-24]. There arises the need for
an efficient technique that avoids the implicit
requirement of performing completely new solutions as
the geometry is sought, particularly in 3D applications.
 We adopt a hybrid singular superposition/BEM
method developed by the authors [25] for the efficient
solution of the inverse geometric problem of detection
of subsurface cavities and flaws using thermographic
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techniques and apply this to a three-dimensional
inverse geometric problem. Here, a superposition of
clusters of sources/sinks with a BEM solution of the
forward problem offers a numerical scheme that does
not require re-meshing of the interior geometry as
inverse problem is solved iteratively to detect the flaw
or cavity. The location of the cluster or clusters and
strengths of the sources/sinks within the cluster is first
determined to satisfy Cauchy conditions at the exposed
surface. The clusters must locate themselves within the
cavity(ies) if such are present or outside the problem
domain, if there are no cavities enclosed in the domain,
in order to satisfy the governing Laplace equation.
Subsequent to the location of the cluster(s) and strength
of the associated strengths of the sources/sinks within
the cluster(s), a search is initiated to located the internal
geometry corresponding to the enclosed cavity(ies) that
satisfies the boundary condition at the cavity side. The
latter is taken as adiabatic in this study. Although
prescribing an adiabatic condition is not necessary for
the algorithm developed herein, this is rather an
example of a practical imposition of a boundary
condition at the cavity side, and in this case offers is
good model of an air pocket type inclusion. Both the
location of the cluster(s) and associated strengths of the
sources/sinks and the search for the cavity geometry is
accomplished using a genetic algorithm (GA). The
approach offers tremendous advantage in reducing the
computational burden involved in re-meshing and
presents a very promising technique for 3D
applications. Moreover, the method can be readily
extended to the closely-related design problem of shape
optimization of thermal systems and may be extended
to other field problems of NDE using surface
displacements in an elasticity-based approach to
solving the inverse geometric problem [26,27].

FORMULATION OF THE INVERSE SOLUTION
ALGORITHM
 In steady-state inverse geometric problem under
consideration, the governing equation is the Laplace
equation, the heat flux and temperature at the exposed
surface of the body are both known and thus specified,
and the boundary condition at the cavity side is
specified as adiabatic. The geometry of the cavity is,
however, unknown and to be determined as the goal of
the solution of the inverse problem. There are three
components to the solution algorithm:
 (1)  the forward problem solver: a hybrid
         BEM/singularity method.
 (2)  inverse problem solver: GA to locate and fix
  singularity cluster strengths to match Cauchy
  conditions imposed at exposed boundary.

 (3)  cavity shape detection: GA to locate cavity
  walls. 

The Forward Problem Solver
 The problem of steady heat conduction in
homogeneous media is governed by the Laplace
equation in analogy with the behavior of the velocity
potential and the stream function in ideal fluid flow
problems. The superposition of singular potentials in
an incoming flow is known to generate shapes
characterized by curves of constant stream function
value that are impervious to the flow. In a heat
conduction problem, the existence of a cavity can be
characterized by an internal adiabatic contour. Such
contour can be artificially construed by counter-
balancing the heat flow generated by external boundary
conditions with the heat flow generated by  singular
perturbations such as sources and sinks of different
strengths. These singularities must be located within
the cavitiy(ies) and thus outside the domain problem to
satisfy the Laplace equation, see Fig. 2. The underlying
concept of the method is thus borrowed from potential
flow theory, where, for example, the superposition of a
doublet of appropriately fixed strength to counteract an
incoming uniform flow generates an impervious
cylindrical surface or the superposition of an
appropriately placed and calibrated source and sink
counteract a uniform incoming flow to generate a
Rankine oval with a surface impervious to the
incoming flow.
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Figure 2. Singularity superposition configuration.

 The mathematical formulation that follows this
idea consists of the Poisson equation for the
temperature  where the generation term is theX ÐBÑ
summation of singular field perturbations characterized
by -localized Dirac delta functions as:O

, $f XÐBÑ  U ÐBß B Ñ œ !s#

5œ"

O

5 5�Š ‹ (1)

where  is the thermal conductivity,  represents the, Us5

strength of the perturbation positive for a source and
negative for sink, and  represents the perturbationB5

locations which in the final solution have to be located
within the internal cavity, or external to the body,
otherwise the Laplace equation would be violated.  
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 The above equation is solved by the Boundary
Element Method (BEM), a numerical technique that
lends itself ideally to the problem due to its boundary-
only discretization feature and its ability to relate the
field variable values anywhere in the domain to the
information along the boundary. These characteristics
of the BEM will make it possible to isolate the effects
of the added singular perturbations and compute the
field variable values only where necessary. A standard
BEM formulation starts with the introduction of a free-
space fundamental solution  and aKÐBß Ñ03
transformation of the governing equation into an
integral equation over the domain . Green's secondH
identity is applied to the domain integral to transform it
into contour integrals over the boundary  as:>

GÐ ÑX Ð Ñ  X ÐBÑLÐBß Ñ. œ

 ;ÐBÑKÐBß Ñ. œ U KÐB ß Ñs

0 0 0 >

0 > 0

3 3 3

3 5 3

5œ"

O

5

*
* �

>

>

 (2)

where , , andLÐBß Ñ œ  ;ÐBÑ œ 0 , ,3
KÐBß Ñ `X ÐBÑ

`8 `8
03

GÐ Ñ03  depends on the geometry and location of the
source point . Following the discretization of the03
boundary  with -nodal locations and the collocation> R
of the source point  at these -locations, the above03 R
boundary integral equation reduces to the standard
form:

� � �
4œ" 4œ"

R R O

34 4 34 4 35

5œ"
5K ; œ L X  K Us (3)

We used quadratic discontinuous elements in all our
computations [24]. Provided that a well-posed problem
is available with a properly defined geometry and set of
boundary conditions, the above equation is collocated
to provide a set of linear equations of the form
E B œ ,  W 3 œ "ÞÞÞR W34 4 3 3 3 with  and where  contains
the effects of the added singularities . The solutionUs5

to this system provides the full distribution of
temperatures and fluxes around the boundary that can
later be used in the same formulation to calculate these
variables anywhere in the domain . It is note that onlyH
an exterior discretization is required in this forward
problem formulation.

The Inverse Problem Solver
 In the inverse case where the location, size, and
shape of the cavity are unknown, the strengths of the
added singularities may be adjusted to counteract the
heat flow generated by the boundary conditions
imposed at the exterior boundary and to consequently
produce the artificial adiabatic contour enclosing them.

This can be accomplished by the minimization of a
functional that reduces the standard deviation of the
successively BEM-computed temperatures  at theX3

3 œ "ß #ÞÞÞR R7 7 measuring points with respect to the 
measured temperatures  at the exposed boundaries,Xs 3

and formally,

WÐU ß DÑ œs
5

ÍÍÍÌ �ˆ ‰"

R
X  Xs

7 3œ"

R

3 3
#

7

(4)

This objective function depends on  the singularity
strengths, and a number of other parameters  to beU ß Ds

5

shortly specified. It may be regularized by adding an
explicit damping term other techniques, such as proper
selection of an iterative stopping criterion, when using
gradient-based techniques. However, when using the
non-gradient-based genetic algorithm (GA) [28]
adopted in this study, the smoothing property inherent
in the algorithm permits solution without explicit
regularization.
 In solving inverse problems it is important to keep
the sought-after parameters to a minimum. To this end,
in 2-D, each cavity is characterized by a cluster of
O œ ) singularities located on the discrete edges of a
rotated ellipse defined by thirteen parameters:

 (a) strengths, , of 8 equally distributedUs5

   singularities around the edge of an ellipse,
 (b)  and  locations of the centroid of the ellipse,B C
 (c)  - and -lengths of axes of the ellipse,< <B C

 (d) angle  of rotation with respect to the -axis.α B

The explicit dependency of the objective function in
Eqn. (4) on these thirteen parameters will provide
enough degrees of freedom to locate a basic but
generally-shaped cavity.
 In 3-D, each cluster is comprised of a sequence of
ever increasing number of parameters in a 3 level
search. It is noticed from 2-D computations that the
location of the center of the cluster is readily found
within the first few GA generations and subsequently
much effort is expended in adjusting strengths to
satisfy imposed external boundary conditions. Thus,
initially, the cluster is composed of  six singularities
with one at each pole of an ellipsoid and four equally
distributed on a ring at the ellipsoid equator, thus
unknowns appearing in the GA are the six strengths of
the singularities, -, -, and -locations of the ellipsoidB C D
centroid, its major and minor axes, and two angles
defining its inclination or a total of 13 unknowns. The
GA searches all the allowable space within the external
domain enclosure. Once the centroid is located, the
next level of search is carried out, by increasing the
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number of singularities to 14 singularities (2 located at
the poles of the ellipsoid and 12 located on two rings
equally spaced from the poles along the long axis of
symmetry each ring bearing 6 singularities). However,
in this search of the GA, the geometric search space is
reduced diminishing the roaming range of the centroid
to locations close to that found by the first model.
Next, a third level finer search is carried out with 26
singularities (2 located at the poles of the ellipsoid and
24 located on three rings equally spaced from the poles
along the long axis of symmetry each ring bearing 8
singularities). In this final search of the GA, the
geometric search space is diminished even further than
in the previous level.
 As the inverse problem is now well-defined, a
means of minimization of the functional must be
sought to be able to provide a global approximation
that disregards the multiple local minima that will
appear as a result of the inherent non-linearity of this
problem. This feature along with many more can be
found in the Genetic Algorithms (GA) lending
themselves perfectly for such application. GA are
robust adaptive search techniques that mimic the idea
of Darwinian evolution using rules of natural selection
to investigate highly complex multidimensional
problems. As a non-gradient-based optimization
technique the use of GA is advantageous for this  until
a best-fit is found that application. The parameters that
characterize the existence of the cavity may be
progressively adjusted by the operators of the GA
maximizes a fitness function. This fitness function can
be easily and directly defined as the inverse of the
least-square functional  as:WÐU ß DÑs

5

^ÐU ß DÑ œ "ÎWÐU ß DÑs s
5 5 (5)

The combination of these techniques in the shape
optimization problem minimizes the need for
computationally intensive algorithms as no new
discretizations are required for the solution of different
direct problems along the optimization process. These
solutions are achieved by simply changing the right-
hand side vector of a linear system of equation whose
coefficient matrix is calculated and factorized only
once. These features offer a tremendous computational
savings in 3-D cavity detection. Once the strengths of
the singularities and their location is determined by
locating their carrier ellipse, there remains the task of
finding the adiabatic line corresponding to the sought
after cavity. Here, an optimization problem is solved.

Cavity Shape Location
 Locating the cavity is now the problem of
searching the continuous domain enclosed by the

exterior boundary for the location of the adiabat.
Consequently, the integral equation, Eqn. (2), is
differentiated with respect to the  and  discreteB C3 3

locations around the edge of a rotated ellipse in 2-D
that surrounds the singularity cluster,  see Fig. 3, or a
rotated ellipsoid in 3-D, in order to provide the heat
flux . Thus, a second;ÐB ß Ñ œ  `XÐB ß ÑÎ`83 3C C3 3,
optimization problem is solved to adjust the five
parameters of a rotated ellipse  thatÐBß Cß < ß < ß ÑB C α
surrounds the cluster until heat fluxes are minimized.
This is again accomplished using a genetic algorithm
with fitness function:

^ÐBß Cß < ß < ß Ñ œB C

"

α
Î ÑÐ Ó
Ï Ò

ÍÍÍÌ �� �"

R
;

; 4œ"

R

4
#

;

 (6)
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Figure 3. BEM discretization and inverse problem
configuration.

The Genetic Algorithm
 The GA optimization process begins by setting a
random set of possible solutions, called the population,
with a fixed initial size or number of individuals. Each
individual is defined by optimization variables and is
represented as a bit string or a chromosome, see Fig. 4.
An objective function, , is evaluated for everyZGA
individual in the current population defining the fitness
or their probability of survival. At each iteration of the
GA, the processes of selection, cross-over, and
mutation operators are used to update the population of
designs. A selection operator is first applied to the
population in order to determine and select the
individuals that are going to pass information in a
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Figure 4. Example of an individual in the population
characterized by four parameters (genes) encoded in a
chromosome yielding the individual's fitness value J Þ"
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mating process with the rest of the individuals in the
population. This mating process is called the crossover
operator, and it allows the genetic information
contained in the best individuals to be combined to
form offsprings. Additionally, a mutation operator
randomly affects the information obtained by the
mating of individuals. This is a crucial step for
continuous improvement.
 In the GA we used to generate results presented in
the example section, the following parameters are
chosen: population size of  individuals/generation,&!
with a  strings of 8 bits for the position, strength, and
radii, and five bits for each angle. The mating process
produces one children per mating using uniform
crossover which produces a higher level of diversity
than single point cross-over, a 4% probability of jump
mutation, 20% probability of creep mutation, and 50%
probability of crossover. The population is not allowed
to grow (static population) and elitistic generation (the
best parent survives to the next generation). The
population is completely eliminated after 50
generations if there is no further improvement, keeping
the best member of the population (restart). We use no
micro-generation, the practice of  periodically
decreasing of the population size with a sharp increase
in mutation in an effort to create further diversity in
large problems. This combination of parameters and
procedures has been proven to yield efficient and
accurate optimization results for different studies
carried out in this paper. This completes the theoretical
developments in this paper, attention is now given to
numerical examples in 2-D and 3-D that are used to
illustrate the algorithm developed above for the
solution of the inverse geometric problem.

NUMERICAL EXAMPLES
  In the numerical examples considered in this
section, a forward problem is solved using the BEM to
first to generate boundary conditions at the external
surface. Discontinuous boundary elements are used in
all cases and adaptive quadratures are implemented in
the 2D and 3D BEM codes. These are in turn used to
simulate inputs to the inverse problem. Random error is
then added to surface temperatures to simulate
measurement error/uncertainty in the range of expected
accuracy in measured temperatures.
 Numerical studies [25] established the trend that
clusters relatively quickly locate the center of the
cavity in the first iterations and then spend the rest of
the iterations adjusting the singularity strengths. This
trend can readily be exploited in 3D applications where
an educated sequentially more refined search is
performed: a coarse cluster is first used to locate the

center of the cavity, followed by increasingly refined
clusters searching in a reduced spatial domain close to
the estimated cavity center. When a non-existent hole
is sought by the algorithm, within a generation the
cluster(s) move outside the simply or multiply-
connected domain and remain there in all subsequent
iterations, otherwise the Laplace equation would be
violated. Furthermore, the size of the cluster(s) reduce
to a very small surface, a hint that can be used in future
simulations to eliminate clusters that may not
contribute to the solution of the problem.
 This is illustrated in the 2D example problem
where an attempt is made to locate an elliptic hole
centered at with minor and majorÐBß CÑ œ Ð!Þ)&ß !Þ$Ñ
axes  and tilted at an angleÐ< ß < Ñ œ Ð!Þ!&ß !Þ!)ÑB C

α 1œ Î' and located within the doubly connected
plate. The elliptic hole is discretized using 20 quadratic
boundary and the plate is discretized using 40 quadratic
discontinuous boundary elements on each boundary,
see Fig. 5(a) for the geometry and boundary conditions
used in the forward problem, and Fig. 5(b) for the
location of the measurements used in the solution of
the associated inverse geometric problem. The
detection of the cavity is carried out using temperature
inputs from the direct problem which are ladened with
+/- 0.25 degrees maximum random error.
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 (a) BEM mesh and  (b) sensor locations for
       boundary conditions.       temperature measurements.
Figure 5. Locating a tilted elliptical cavity enclosed in a
doubly-connected square plate.

 First, we send two clusters to search for the single
cavity and the evolution of the search is provided in
Fig. 6(a)-(f). Notice that one cluster locates itself inside
the cavity, while the other exits the doubly-connected
domain and shrinks to a very small area. As such, that
cluster is eliminated, and the search is continued with
the single surviving cluster. Finally, the cavity is
successfully located, see Fig. 6(f). The objective
function evolution for the cluster identification and
hole location are displayed in  Fig. 7(a)-(c). This
example illustrates how to seek a cavity and answers
the question as to how many clusters to launch.
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(b) 50th generation of 2 cluster search.
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(a) 1st generation of 2 cluster search.
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(c) 100th generation of 2 cluster search.

(d) 1000th generation of 2 cluster search.(b) 50th generation of 2 cluster search.
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(c) 100th generation of 2 cluster search.

(d) 1000th generation of 2 cluster search.
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(e) 1st generation of single cluster search. (f) 800th generation of single cluster search.
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(e) 1st generation of single cluster search. (f) 800th generation of single cluster search.

 
Figure 6. Cluster identification with +/-0.25 simulated
input random error in temperatures.

 The second example is a challenging 3D
application where we seek a cavity located within a
Ð" ‚ " ‚ "Ñ parallelpiped with a rectangular plenum in
the -direction of -  size . A sphericalD B C Ð!Þ% ‚ !Þ%Ñ
cavity whose center is located at  andÐ!Þ%ß !Þ%ß !Þ#Ñ
with radius  is to be located, see Fig. 8. NinetyÐ!Þ!(&Ñ
six discontinuous bilinear boundary elements are used
to discretize the problem and convective conditions
imposed on exposed surfaces: ,  onX œ "!! 2 œ &

∞

outside wall; ,  on bottom wallX œ "!! 2 œ #!
∞

D œ !Þ& X œ ! 2 œ $! X œ !; ,  on inside wall; ,
∞ ∞

2 œ #! D œ !Þ& on top wall at . There are 728
measuring points located at each element midpoint.
Simulated surface temperatures were ladened with
random errors with a maximum of ±  degrees.!Þ#&
Cluster identification was performed using three levels
of increasingly refined search space and increasing
number of singularities in the cluster:
   (a) Search in full space:  from  to ;  fromB !Þ& !Þ& C
   to ;  from  to ; 6 singularities.!Þ& !Þ& D !Þ& !Þ&
   (b) Search in limited space:  from  to ; B !Þ# !Þ& C
  from  to ;  from  to ; 14 singularities.!Þ# !Þ& D ! !Þ&
 (c) Search in narrow space:  from  to ;B !Þ$& !Þ%&

    from  to ;  from  to ;C !Þ$& !Þ%& D !Þ"& !Þ#&
  26 singularities.
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Figure 8. BEM mesh and cavity for the 3D example.
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 Results of the cavity detection are displayed in
Figs. 9(a) and 9(b) for the 1st level of search, while the
coarse 6 singularity cluster final location after 2000
GA generations is shown in a close-up in Fig. 10(a). It
is noted that the cluster is located within the actual
cavity. Now that cluster location has settled, the next
level of refinement in the search is undertaken by
increasing the number of singularities from 6 to 14
while restricting the geometric search space to a region
close to the converged location of the coarse 6
singularity cluster. Finally, a refined search is carried
out by increasing the cluster to 26 singularities with an
even more restrictive geometric search space. Results
are displayed in Fig. 10(a)-(c) and the final detected
cavity is compared to the exact cavity in Fig. 10(d). It
is clear that the cavity is successfully detected in terms
of its location and size.

 
 (a) 1st generation. (b) 1000th generation.
Figure 9. First level cluster identification.

(a) 1st level identification    (b) 2nd level identification
     after 2000 generations.   after 2000 generations.

 
(c) 3rd level identification  (d) detected cavity overlaid
     after 2000 generations.          with exact cavity.
Figure 10. Zoom-in of converged first, second and
third levels of refinement in cluster identification and
comparison of exact and detected cavity.

CONCLUSIONS
 We present a hybrid BEM/singularity
superposition method for the detection of subsurface
cavities and flaws using thermographic techniques. A
genetic algorithm is used to solve the inverse problem
locating of the cluster(s) of singularities and fixing
their strengths and subsequently identifying the cavity
geometry. An adiabatic condition is taken at the cavity
side, as this is the most feasible condition to assume in
an inverse detection problem.  The method does not
require re-meshing of the interior geometry as the
inverse problem is solved iteratively. The approach
thus significantly reduces algorithmic complexity and
computational burden. Examples demonstrate the
ability of the method to successfully locate location and
size of a single and multiple cavities. The technique is
readily applicable to the closely related problem of
shape optimization, where the condition at the cavity
side may be arbitrarily specified as a design target. The
authors are pursuing extendions of the method to an
elasticity approach to solving the inverse geometric
problem using surface displacements information.
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